

Task & Challenge & Contributions

• Task: Class-Incremental Learning^[1]

- Different classes arrive in different phases;
- At any time, it provides a classifier for the classes observed so far;
- The memory is limited.

• Challenge: Memory Allocation between Old and New classes

- High-plasticity models easily forget old classes;
- High-stability models are weak to learn new classes.

• Contributions

- A hierarchical reinforcement learning algorithm called RMM to manage the memory in a way that can be conveniently modified through incremental phases and for different classes;
- A pseudo task generation strategy that requires only in-domain available data (small-scale) or cross-domain datasets (large-scale), relieving the data incompatibility between reinforcement learning and class-incremental learning;
- **Extensive experiments, visualization, and interpretation** for RMM in three CIL benchmarks and using two top models as baselines.

RMM: Reinforced Memory Management for Class-Incremental Learning

Yaoyao Liu¹ Bernt Schiele¹ Qianru Sun²

¹Max Planck Institute for Informatics ²Singapore Management University

Framework & Optimization Steps

The RL system

(a) The *i*-th incremental phase of the *k*-th pseudo CIL task

• Optimization Steps

- The expected cumulative reward $J(\eta, \phi) = \mathbb{E}_{\mathcal{T}} \mathbb{E}_{\pi_{\eta}, \pi_{\phi}}[R].$
- Using the policy gradient theorem

$$\nabla_{\eta,\phi} J(\eta,\phi) = \mathbb{E}_{\mathcal{T}} \left[\sum_{i=1}^{N} \mathbb{E}_{\pi_{\eta},\pi_{\phi}} [\nabla_{\eta,\phi} \log(\pi_{\eta}(a_{i}^{[1]}|s_{i})$$

- Following the REINFORCE algorithm

$$\nabla_{\eta,\phi} J(\eta,\phi) = \frac{1}{ZK} \sum_{k=1}^{K} \sum_{z=1}^{Z} \sum_{i=1}^{N} \nabla_{\eta,\phi} \log(\pi_{\eta}(a_i^{[1]}|s_i)\pi_{\phi}(a_i^{[2]}|s_i,a_i^{[1]}))(R_z^k - b)$$

(b) Reinforced Memory Management (ours)

(b) The *k*-th pseudo CIL task

$)\pi_{\phi}(a_{i}^{[2]}|s_{i},a_{i}^{[1]}))R]$

Experiment Results

• Ablation Study

	- CIFAR-100							ImagNet-Subset						
Ablation Setting	N=5		10		25		5		10		25			
	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last		
1 BaseRow	66.61	57.81	64.61	55.70	62.63	52.53	77.36	70.02	75.83	68.97	72.18	63.89		
2 One-level RL	67.92	58.61	66.94	58.31	65.95	56.44	78.50	72.00	78.15	71.00	75.47	67.47		
3 Two-level RL (Used)	68.86	59.00	67.61	59.03	66.21	56.50	79.52	73.80	78.47	71.40	76.54	68.84		
margin	+2.3	+1.2	+3	+3.3	+3.6	+4	+2.1	+3.8	+2.6	+2.4	+4.4	+5		
4 Two-level RL (T.P.)	68.62	59.40	67.22	58.20	65.82	56.20	78.81	72.42	77.68	70.77	75.29	68.81		
margin	+2	+1.6	+2.6	+2.5	+3.2	+3.7	+1.5	+2.4	+1.9	+1.8	+3.1	+4.9		
5 UpperBound RL	70.00	61.12	68.36	60.00	66.56	56.74	80.01	74.31	78.95	71.97	76.99	69.14		
6 CrossVal Fixed	67.50	58.48	66.69	57.19	65.73	55.51	77.96	70.31	76.70	69.08	74.18	66.10		

• Comparing w/ SOTA

Method	CIFAR-100				ImageNet-Subset				ImageNet-Full			
	N=5	10	25	-	5	10	25	_	5	10	25	
LUCIR [18]	63.34	62.47	59.69		71.21	68.21	64.15		65.16	62.34	57.37	
Mnemonics [29]	64.59	62.59	61.02		72.60	71.66	70.52		65.40	64.02	62.05	
PODNet [13]	64.60	63.13	61.96		76.45	74.66	70.15		66.80	64.89	60.28	
LUCIR-AANets [28]	66.88	65.53	63.92		72.80	69.71	68.07		65.31	62.99	61.21	
w/ RMM (ours)	68.42	67.17	64.56		73.58	72.83	72.30		65.81	64.10	62.23	
POD-AANets [28]	66.61	64.61	62.63		77.36	75.83	72.18		67.97	65.03	62.03	
w/ RMM (ours)	68.86	67.61	66.21		79.52	78.47	76.54		69.21	67.45	63.93	

• The Memory Allocated for "Old" and "New"

